Sequence similarity
and global alignment

UNIVERSITY OF

NS
@ MARYLAND slides (w/*) courtesy of Carl Kingsford

Relatedness of Biological Sequence

Phylogenetic Tree of Life

Bacteria Archaea
Green
Filamentous
Spirochetes bact,erla
Gram Methanosarcina
_\ Positives| yathanobacterium
Proteobacteria

_ Methanococcus

Cyanobacteria
T. celer
Planctomyces Thermoproteus
Pyrodicticum

Bacteroides
Cytophaga
Thermotoga —
Aquifex —

https://en.wikipedia.org/wiki/Phylogenetic_tree

Eukaryota

Entamoebae

Halophiles

Slime

mc;lds

Animals
Fungi

Plants

Ciliates
Flagellates

Trichomonads

Microsporidia

Diplomonads

Relatedness of Biological Sequence

Phylogenetic Tree of Life

Bacteria Archaea Eukaryota
Green
Filamentous Sli
Spirochetes bacteria Entamoebae mcI)IIEIZ Animals
, -
Gram Methanosarcina | Fung!
_\ positives| yiathanobacterium Halophiles
Proteobacteria Plants
_ Methanococcus
Cyanobacteria Ciliates
T. celer
Planctomyces Thermoproteus Flagellates
Pyrodicticum
Bacteroides Trichomonads
Cytophaga
Microsporidia

Thermotoga —

Aquifex —

https://en.wikipedia.org/wiki/Phylogenetic_tree

Diplomonads

“Descent with modification”

Relatedness of Biological Sequence
Phylogenetic Tree of Life

Bacteria Archaea Eukaryota
Green
Filamentous Sli
Spirochetes bacteria Entamoebae méﬂz Animals
, -
Gram Methanosarcina | Fung!
~\ Positives| prathanobacterium Halophiles
Proteobacteria Plants
_ Methanococcus
Cyanobacteria Ciliates
T. celer
Planctomyces Thermoproteus Flagellates
Pyrodicticum
Bacteroides Trichomonads
Cytophaga
Microsporidia
Thermotoga —
_ Diplomonads
Aquifex —

Organisms inherit genetic
material from ancestors,
but evolve “Independently”

https://en.wikipedia.org/wiki/Phylogenetic_tree

Relatedness of Biological Sequence
Phylogenetic Tree of Life

Bacteria

Proteobacteria

Cyanobacteria

Planctomyces

Bacteroides

Archaea Eukaryota
Green
Filamentous Sli
Spirochetes bacteria Entamoebae mcl:l?iz Animals
, .
Gram Methanosarcina | Fung
positives| nrethanobacterium Halophiles
Plants
Methanococcus
Ciliates
T. celer
Thermoproteus Flagellates
Pyrodicticum
| Trichomonads

Cytophaga T

Thermotoga

MOosSt recent common
ancestor

Aquifex —

https://en.wikipedia.org/wiki/Phylogenetic_tree

Microsporidia

Diplomonads

Organisms inherit genetic
material from ancestors,
but evolve “Independently”

B

—
THE

FELLOWSHIP
OF THE RING

.‘}5015%

THE
FELLOWSHIP

~

Consider an analogy

THE
FELLOWSHIP
OF THE RING

2

<

.

“When Mr. Bilbo Baggins of Bag End
announced that he would shortly be
celebrating his eleventy-first birthday
with a party of special magnificence,

there was much talk and excitement in
Hobbiton”

~N

J

“When Mr. Bilbo Baggins of Bag End
announced that he would shortly be
celebrating his eleventh-first birthday
with a party of special magnificence,

there was much talk and excitement in
Hobbiton”

.

~N

L~

“When Mr. Biloo Baggens of Bag End
announced that he would shortly be
celebrating his eleventh-first birthday
with a party of special magnificence,

there was much talk and excitement in
Hobbiton”

.

““When Mr. Bilbo Baggins of Bag End
announced that he would shortly be

OF THERING

celebrating his eleventh-tirst birthday
with a party of special magnificence,
there was much talk and excitement in

+:https://en

Hobbit-town”

.

~

c‘When . Bilbo Baggins of Bag End \
announced that would shortly be

L~

celebrating his eleventh-tirst birthday
with a party of special magnificence,
there was much talk and excitement in

Hobbit-town”

_

Wwikipedia.org/wiki/The Fellowship_of the Ring

https://en.wikipedia.org/wiki/The_Fellowship_of_the_Ring

Seqguence tells a story

® [f twO sequences are similar, this provides
evidence of descent from a common ancestor

® Sequences are conserved at different rates

e \/ery similar sequence can indicate a very recent
common ancestor, or a highly conserved function

Why compare DNA or protein sequences?

Partial CTCF protein sequence in 8 organisms:

H. sapiens -EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE-——-—-—-———- POQPVTPA
P. troglodytes —-EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE-——-—-—-———- POPVTPA
C. lupus -EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE-——-—-—--———- POQPVTPA
B. taurus -EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE-——-—-—--———- POQPVTPA
M. musculus —EDSSDSEENAEPDLDDNEEEEEPAVEIEPEPE-—-POQPOQPPPPPQPVAPA
R. norvegicus —EDSSDS-ENAEPDLDDNEEEEEPAVEIEPEPEPQPQPOPOPOPOPVAPA
G. gallus —EDSSDSEENAEPDLDDNEDEEETAVEIEAEPE-———-—-———- VSAEAPA
D. rerio DDDDDDSDEHGEPDLDDIDEEDEDDL-LDEDOMGLLDQAPPSVPIP-APA

® |dentify important sequences by finding conserved regions.
® Find genes similar to known genes.

® Understand evolutionary relationships and distances (D. rerio aka zebrafish is
farther from humans than G. gallus aka chicken).

® |nterface to databases of genetic sequences.
® As astep in genome assembly, and other sequence analysis tasks.

® Provide hints about protein structure and function (next slides).

en.wikipedia.org CC3

http://en.wikipedia.org

Sequence can reveal structure

2y

dendrotoxin K

3ovine

pancreatic
trypsir
iINhibitor

(a) 1dtk (b) 5pti

ldtk XAKYCKLPLRIGPCKRKIPSFYYKWKAKQCLPFDYSGCGGNANRFKTIEECRRTCVG-
Spti RPDFCLEPPYTGPCKARITIRYFYNAKAGLCQTEVYGGCRAKRNNFKSAEDCMRTCGGA

Why Not Exact Matching®

Suffix tree [/ array and BWT / FM-index are powertul tools for finding exact
patterns in a large text, but exact matching is insufficient. Reads have errors
and there is true genomic variation between a reference and a sample.

Typical strategy (many variants):

nd all places where a substring of the Requires

query matches the reference exactly (seeds efficient
exact search

* Filter out regions with insufficient exact
matches to warrant further investigation

* Perform a “constrained” alignment that Here Is where

includes these exact matching “seeds” ,_ — We US€ Our
alignment DPs

Why |s This Possible”

This is (usually) a heuristic (doesn't guarantee you find
all alignment locations within the budget for a read).

But, due to the error profiles of reads, this often works
well.

Per base sequence quality

Quality scores across all bases (Sanger f lllumina 1.8 encoding)

[1
(11
—L
—— 1]
|

_ : error type error rate read length
E %% (MLEN subst. ~0.1% 50-300

Nanopore [[glel=] 10-30% 5-10kb

Pac Bio indel 10-15% 10-15kb

READ 1

150120 0 e D 53 B) S I g v v) 1 PO W O OO IO ORI s et

¢avay

2nd generation reads are often “paired-end”

Typical Strategy

Seed & Extend:

exact match (seed

reference

The Language of Strings

A string s is a finite sequence of characters

|s| denotes the length of the string — the number
of characters in the sequence.

A string is defined over an alphabet, 2

2pnNA = {AT,C,G}
2rNA = {AU,C,G}
zAminoAcid — {A’ R’ N’ D’ C’ E’ Q’ G’ H’ I’ L’ K’ Ma E P’ S,T,VV,Y,V}

The empty string is denoted € — |e| =0

adapted from a slide by Ben Langmead

The Language of Strings

Given two strings s,t over the same alphabet 2, we denote
the concatenation as s€ — this is the sequence of s followed
by the sequence of ¢

String S is a substring of t if there exist two (potentially empty)
strings U and V such that € = usv

String s is a subsequence of t if the characters of s appear in order (but not nece
consecutively) in €

%j
substring N subsequence

String s is a prefix/suffix of € if € = su/us — if neither s nor u are €,then s is a
prefix/suffix of €

adapted from a slide by Ben Langmead

The Simplest String Comparison Problem

Given: Two strings

d = d1d=20a304...Am

b — b1b2b3b4...bn

where a;, b; are letters from some alphabet, ¥, like {A,C,G,T}.

Compute how similar the two strings are.

What do we mean by “similar”?

Edit distance between strings a and b = the smallest number of the
following operations that are needed to transform a into b:

e mutate (replace) a character

e delete a character
delete insert

 insert a character riddle — ridle r&tat; riple — trlple
K

The String Alignment Problem

Parameters:

¢«

e “gap” is the cost of inserting a “-” character, representing an insertion
or deletion (insertion/deletion are dual operations depending on the
string)

e cost(x,y) is the cost of aligning character x with character y.
In the simplest case, cost(x,x) = 0 and cost(x,y) = mismatch penalty.

Goal:

e Can compute the edit distance by finding the lowest cost alignment.
(often phrased as finding highest scoring alignment.)

e Cost of an alignment is: sum of the cost(x,y) for the pairs of characters
that are aligned + gap x number of - characters inserted.

. - RIDDLE
€.9. cost('D’, 'P) =1 TRIP - LE

Total cost = 3+0+0+1+34+0+0 =7

Another View: Alignment as a Matching

Each string is a set of nodes, one for each character.

Looking for a low-cost matching (pairing) between the sequences.

The operations at our disposal

Insertion (into a ~ from b)
Mutation
(from a ~ insertion into b)

When we “delete a” character in a this is the same as inserting the

¢ ¢¢ °

character “-" in b. Conceptually, you can think of this as aligning the

deleted character with “-*. Under this model cost(x,-‘) = cost(’-',x) = gap
forany x € 2

Another View: Alignment as a Matching

Each string is a set of nodes, one for each character.

Looking for a low-cost matching (pairing) between the sequences.

SN R AR

Cost of a matching is:

o
[l

gap X #unmatched + Z cost(a;, bj)
(aiabj)

Edges are not allowed to cross!

Representing alignments as edit

transcripts

Can think of edits as being introduced by an optimal editor working left-to-right.
Edit transcript describes how editor turns x into y.

ﬁ

v GCGTATGCGGCTAACGC Operations:
M = match, R = replace,

y: GCT/fTGCGGCTATACGC I =insert into x, D = delete from x

;.
XX GCGTATGCGGCTAACGC

|] MMD
wGC—TATGCGGCTATﬁCGC

>»
X GCGTATGCGGCTA-ACGC

| | RN MMDMMMMMMMMMMI
wGC—"A"GCGGCTATACG%

>

x GCGTATGCGGCTA-ACGC
et MMDMMMMMMMMMMI MMMM

yy GC-TATGCGGCTATACGC

Slide courtesy of Ben Langmead

Representing edits as alignments

prin-ciple
ERRERREP:e:
prinncipal
(1 gap, 2 mm)
MMMMIMMMRR

misspell

mis-pell

(1 gap)
MMM IMMMM

aa-bb-ccaabb

X[

ababbbc-a-b-
(5 gaps, 1 mm)
MRIMMIMDMDMD

prin-cip-1le
T
prinncipal-

(3 gaps, 0 mm)
MMMMIMMMIMD

prehistoric

———-historic

(3 gaps)
DDDMMMMMMMM

al-go-rithm-
| XX | X
alKhwariz-mi
(4 gaps, 3 mm)
MMIRRIMMRDMI

Query
Sbjct
Query
Sbjct
Query
Sbjct
Query
Sbjct
Query
Sbjct
Query
Sbjct
Query
Sbjct
Query

Sbjct

NCBI BLAST DNA Alignment

>gb|AC115706

1650

56838

1710

56896

1769

56948

1829

57008

1889

57056

1943

57115

2003

57169

2063

57225

gtgtgtgtgggtgcacattitgtgtgtgtgtgecgectgtggtgtgggtgeetgtgtgtgt
LELEREEEEE L PErrererr o rererrry LI T Ty

GTGTGTGTGGAAGTGAGTTCATCTGTGTGTGCACATGTGTGTGCA--TGCATGCATGTGT

gtg-gggcacatttgtgtgtgtgtgtgtgectgtgigtgggtgecacatitgtgtgtgtge
AR RN R I N O O
GTCCGGGCA-——--~ TGCATGTCTGTGTGCATGTGTGTGTGTGTGCAT--GTGTGAGTAC

ctgtgtgtgtgtgectgtgtgtgggggtgeacatitgigigtgtgtgtgeetgigtgtgg
O B O

CTGTGTGTGTATGCTTGTATGTGTGTGTGTGCATGTGTGTAGGTGTGTATATGTGTAAGT

gggtgecacatttgigtgtgtgtgtgectgtgtgtgtgggtgecacatttgigigtgtgtgt
LR Leeerer reeerr reer rorer e LELEEREREE 1

o e —— CATCTGTGTGTATGTGTG--TGTGAGAGTGCATGCA----TGTGTGTGTGAGT

gectgtgtgt-—gtgggtgeacatttgtgtgtgtgtgectgtg--tgtgt--gggtgeac
N L U A I IO L B Y B
TCATCTGTGTCAGTGTATGCTTATGGGTATAACT-TAACTGTGCATGTGTAAGTGTGTTC

atttgtgtgtgtgtgtgectgtgtgtgtgggtgcacatitgtgtgtgtgectggglgg
N I I Y B B SRR R AR R

ATCTGTGTATGTGTGTG--TGTGTGAGTTAGTTCA----TCTGTGTGTGAGAGTGTGTGA

gtgcacatttgtgtgtgtgtgectgtgtgtgtgtgectggtgtgtgggtgeacattitgt
SN U I I I

G--CTCATCTGTGTGTGAGTTCATCTGTATGAGTG--TGTGTATGTGTGTGTACAAATGA

T T T e e T
GTTCATCTGTGCATGTGTGTGTG-—==——~—~ TTTAAGTGTGTTCATCTG--TGTGCGTGT

.7| Mus musculus chromosome 8, clone RP23-382B3, complete sequence

1709

56895

1768

56947

1828

57007

1888

57055

1942

57114

2002

57168

2062

57224

2122

57274

How many alignments are there?

number of alignments

1070

1043

1020

| 1 x x | x x x | x 1 | ‘ 1 1 * ~— length of strings

20 40 60 80 100
min(m,n) - .
— 2k
o =322 (7) (3)

Andrade, Helena, et al. "The number of reduced alignments between two DNA sequences." BMC bioinformatics 15.1 (2014): 94.

How many alignments are there?

number of alignments

1070 -

oss # of atoms in the
| universe ~ (080

- ‘ ‘ | w w w | | w w | ‘ | | | | | | — length of strings

20 40 60 80 100
min(m,n) - .
— 2k
o =322 (7) (3)

Andrade, Helena, et al. "The number of reduced alignments between two DNA sequences.”" BMC bioinformatics 15.1 (2014): 94.

Interlude: Dynamic Programming

General and powerful algorithm design technigue

"Programming” In the mathematical sense —
nothing to do with e.g. code

To apply DP, we need optimal substructure and
overlapping subproblems

optimal substructure — can combine solutions to

‘'smaller” problems to generate solutions to “larger”
problems.

overlapping subproblems — solutions to
subproblems can be “re-used” In multiple contexts
(to solve multiple) larger problems

Example 1: Fibonacci Sequence

Fn=Fn1+ Fn2 With F1 =Fo =1

def fib(n) :

5
/////, \\\\\ if n == or n ==
return
F4 F3 else:
////ﬂ\\\ ///ﬁ\\\\\ return fib(n-1) + fib(n-

-3 2 Fo 1

This recursive way of computing fib(n) is very inefticient!

What is the runtime of this approach (i.e. fib(n) = O(7))

)

Example 1: Fibonacci Sequence

Fn=Fn1+ Fno WithF1=F2 =1

5 def fib(ﬂ):
/\ fn==1orn==2;
-4 F3 return 1
/\ /\ else:
F = = =5 return fib(n-1) + fib(n-2)
F/\ F

This recursive way of computing fib(n) is very inefticient!
Runtime of this approach is fib(n) = O(¢pn) =0O(2n)
golden ratio

Example 1: Fibonacci Sequence

Fn=Fn1+ Fno WithF1=F2 =1
How do we do better than O(¢pn) ?

-5
F/ \
4 F3
SN N
-3 -2 Fo 1

Example 1: Fibonacci Sequence

Fn=Fn1+ Fno WithF1=F2 =1
How do we do better than O(¢pn) ?

It | compute the solutions in the “right order”, |
don't need to waste time re-computing the
same values.

Example 1: Fibonacci Sequence

Fn=Fn1+ Fno WithF1=F2 =1
How do we do better than O(¢pn) ?

/ What is the “right order™?

It | compute the solutions in the “right order”, |
don't need to waste time re-computing the
same values.

Example 1: Fibonacci Sequence

Fn=Fn1+ Fno WithF1=F2 =1
How do we do better than O(¢pn) ?

/ What is the “right order™?

F1 = Fo k3 2 F4 k5

It | compute the solutions in the “right order”, |
don't need to waste time re-computing the
same values.

Example 1: Fibonacci Sequence

Fn=Fn1+ Fno WithF1=F2 =1
How do we do better than O(¢pn) ?
Take 2:

def fib(n):
1f n == or n ==
return
fm2, fml = 1,
for 1 1n xrange (2, n):
fm2, fml = fml, fmZ2 + fml
return fml

We loop up to n, and perform an addition in each
teration —> O(n); much better! Note: O(n) assumes
addition is constant, not true for large enough n.

Example 2: Shortest Path in a DAG

Let G = (V,E) be a directed acyclic graph (DAG) with
vertex set V and edge set E.

Since G directed and free of cycles, there exists a (at least
one) topological order of G — an ordering p(v1), p(va), ...,
0(vn) such that for all e = (v, vj) in E, p(vi) < p(v))

In other words, we can label the nodes of G such that all
edges point from a vertex with a smaller label to a vertex
with a larger label.

Example 2: Shortest Path in a DAG

©-2G
1 2

G- 4 1

topological lorolering(Gu)

(8) (e ~a)" =) D) ~(E

1 2

Dasgupta, Sanjoy, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill, Inc., 2006.

Obtaining a topological ordering

Kahn's algorithm

Builds up a valid topo order node-by-node

L <« Empty list that will contain the sorted elements
S « Set of all nodes with no incoming edges
while S is non-empty do
remove a node n from S
add n to tail of L
for each node m with an edge e from n to m do
remove edge e from the graph
if m has no other incoming edges then
insert m into S
if graph has edges then
return error (graph has at least one cycle)
else
return L (a topologically sorted order)

O(IV] + [E[); why?

https://en.wikipedia.org/wiki/Topological_sorting

Example 2: Shortest Path in a DAG

(8)* ()" ~(a)*~B)"~D)~(E
, L
s 1 ,' :

\

\
\ /
\ /
N /

N 7
N 7

What's the distéﬁ\c_e_ fr’o/m StoB—d(S,B) ?

/

Dasgupta, Sanjoy, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill, Inc., 2006.

Example 2: Shortest Path in a DAG

First, | must go through A, so it's at least d(S,A) + 6

3

OO GRS ORC

Dasgupta, Sanjoy, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill, Inc., 2006.

Example 2: Shortest Path in a DAG

Then, there are 2 ways of getting to A — we choose the
shortest.

Dasgupta, Sanjoy, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill, Inc., 2006.

Example 2: Shortest Path in a DAG

In general, d(S,X) is the
minimum value of d(S,Y) + d(Y,X) for all Y that precede X
and are connected by an edge

/ d(S,X) = miny | x ee{d(S,Y) + A(Y,X)}

This becomes the DP recurrence for our problem

Dasgupta, Sanjoy, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill, Inc., 2006.

Example 2: Shortest Path in a DAG

The problem is solved efticiently by the following algorithm

initialize all dist(:) values to o

dist(s) =0

for each v € V\{s}, in linearized order:
dist(v) = ming, ,ep{dist(u) +I(u,v)}

Dasgupta, Sanjoy, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill, Inc., 2006.

Algorithm for Computing Edit Distance

Consider the last characters of each string:

d = dd=20a5A4...Am

b — b1b2b3b4...bn

One of these possibilities must hold:

1. (am,bn) are matched to each other

2. amis not matched at all

3. bpis not matched at all

4. amis matched to some bj (j#n) and b, is matched to some ai (k#m).

Algorithm for Computing Edit Distance

Consider the last characters of each string:

d = dd=20a5A4...Am

b — b1b2b3b4...bn

One of these possibilities must hold:

1. (am,bn) are matched to each other

2. amis not matched at all

3. bpis not matched at all

4. amis matched to some bj (j#n) and b, is matched to some ai (k#m).

#4 can’t happen! Why?

No Crossing Rule Forbids #4

4. am 1s matched to some b; (j # n) and b, is matched to some ax (k #m).

a

ak M

So, the only possibilities for what happens to the last characters are:
1. (am, bn) are matched to each other
2. am 1s not matched at all

3. bn 1s not matched at all

Recursive Solution

Turn the 3 possibilities into 3 cases of a recurrence:

cost(aj, bj) + OPT(i —1,j — 1) match a;, b,

OPT(i,j) = min< gap + OPT (i — 1,j) a; is not matched
gap + OPT (i,j — 1) b; is not matched
Cost of the optimal T
alignment between Written in terms of
a...ai and b,...b; the costs of smaller
problems

Key: we don’t know which of the 3 possibilities is the right one, so we try
them all.

Base case: OPT (i,0) =i x gap and OPT(0,j) =/ x gap.

(Aligning 1 characters to 0 characters must use 1 gaps.)

Computing OPT(i,j) Efficiently

We're ultimately interested in OPT(n,m), but we will compute all other
OPT1(ij) (1 < n,j) < m) on the way to computing OPT(n,m).

Store those values in a 2D array: NOTE: observe the non-standard

notation here; OPT(i,j) is referring

OPT(i-1, j) to column i, row j of the matrix.
9 | 9 \\
8 | 89 \
7 |79
6 | 69 + — Oj(i, J)

|

5 | 59 e
4 | 4qg f \\ OPT(i, |-1)
. [\EERN=
2 | 2 OPT(i-1, j-1)

O | O 19|29 |30 |49 |59 |69 |79 |89 |9g | 109 | 119 | 12g

o 1 2 3 4 5 6 7 8 9 10 11 12

Filling in the 2D Array

odeel L LV PP
o 1 I I O I A
1 I O O O I A

5 m=----------‘

I I N N A A N N A e
5 e+ 11
1t 1 1 { 1 [] =
A e+ 11

IR RN N

SR S e R

Bl
A A A AN (N AN A N N e

OHIEEEEEEEEIEI

2 3 4 5 6 7 8 9 10 11 12

Edit Distance Computation

EditDistance(X,Y):
For 1 = 1,...,m: A[1,0] 1*gap
For j =1,...,n: A[0,]J] = j*gap

For 1 = 1,...,m:
For j =1,...,n:
A[1,]J] = min(
cost(a[i],b[j]) + A[i_llj_l]l
gap + A[1-1,3]],
gap + A[1,]-1]
)
EndFor
EndFor
Return A[m,n]

Where's the answer?

OPT(n,m) contains the edit distance between the two strings.

Why? By induction: EVERY cell contains the optimal edit distance between
some prefix of string 1 with some prefix of string 2.

Running Time

Number of entries in array = O(m x n), where m and n are the lengths of the
2 strings.

Filling in each entry takes constant O(1) time.

Total running time i1s O(mn).

Finding the actual alignment

OPT(i-1, j)

OPT(i, j)

/

10g

11g

129

10

11

12

OPT(i, j-1)
/

"OPT(i-1, j-1)

gap cost = 3

mismatch cost = 1 Examp\e

2/

24

21

18

15

12

> > O O 4/ 4 O = O

o W o6 | ©
@)

Example

(@)
xn O
B
)
a | <
N
o <
| O
m —
O <«
0O |~
N O
> | O
onN—» O <C
N\
O M <C
h
nﬂ % QN — — —
o << &= == O <C

Example

s O
B
S <
N | <
| O
N
L <
O =
~ O
O+ O
_
}
M- O | <
N
QO+ M | <
N S &R RS ™M | O
O < O + + O <

Example

> > O O 4/ 4 O = O

15+

18+

A

A

30

33

o W o6 | ©

18

21

27

30

33

30

Example

> > O O 4/ 4 O = O

15+

18+

A

A

30

33

o W O | ©

18

21

27

30

33

30

> | WO« W

Example

C | 27
A | 24
G 21
T 18
T 15
G 12
C |9
A 6 30
A 3/ 0 34-—6<——94——12//154-—184-—21/;4//27‘ 3033
O 3 ©6 9 12156 18 21 24 27| 30 33 306
AA G G T A T GJA A T C

> > O @O 4d4/4d4 O = O

O« W O)e— O «—

T

> > O @O 4d4/4d4 O = O

O« W O)e— O «—

T

> > O @O 4d4/4d4 O = O

O« W O)e— O «—

T

> > O @O 4d4/4d4 O = O

O« W O)e— O «—

T

> > O @O 4d4/4d4 O = O

O« W O)e— O «—

T

> > O @O 4d4/4d4 O = O

O« W O)e— O «—

T

> > O @O 4d4/4d4 O = O

O« W O)e— O «—

T

> > O @O 4d4/4d4 O = O

O« W O)e— O «—

T

> > O @O 4d4/4d4 O = O

O« W O)e— O «—

T

> > O @O 4d4/4d4 O = O

O« W O)e— O «—

T

> > O @O 4d4/4d4 O = O

O« W O)e— O «—

T

> > O @O 4d4/4d4 O = O

O« W O)e— O «—

T

Outputting the Alignment

Build the alignment from right to left.

ACGT
A-GA

Follow the backtrack pointers starting from entry (n,m).
o If you follow a diagonal pointer, add both characters to the alignment,

o If you follow a left pointer, add a gap to the y-axis string and add the x-axis
character

e If you follow a down pointer, add the y-axis character and add a gap to the
X-axis string.

Recap: Dynamic Programming

The previous sequence alignment / edit distance algorithm is an example of
dynamic programming.

Main idea of dynamic programming: solve the
subproblems in an order so that when you need an answer, it’s

ready.

Requirements for DP to apply:

1. Optimal value of the original problem can be computed from some similar
subproblems.

2. There are only a polynomial # of subproblems

3. There is a “natural” ordering of subproblems, so that you can solve a
subproblem by only looking at smaller subproblems.

Another View: Recasting as a Graph

LA
éféféféféf

has welght
cost(al,bj)

\

edge from

Traceback path =
shortest path from (0,0) to
(m,n)

Another View: Recasting as a Graph

How would you find a shortest path in this

Traceback path =

shortest path from (0,0) to
(m,n)

graph efficiently?

\
edge from

(-1,j-1) to (i,))
has weight
cost(al,bj)

